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Abstract 
The prevalent risk of malicious infection is an ever-increasing threat to the availability of World-wide 

Information Technology infrastructure, whom form as pillars to day-to-day society as we know it.  

Presenting in many forms, Malware variants have a variety of common objectives from an attacker’s 

perspective. One category known as Ransomware, is a variant of malicious code whom prohibits a 

User from accessing a system and/or its data until a ransom is paid - a modern twist on the 

traditional extortion schemes used by criminal syndicates. 

This is an especially noticeable limitation in current methodologies for malignant detection, using 

signature-based detection, which uses pre-determined rule sets to identify code as malignant or not.  

The following research project investigates and experiments with applying machine-learning models 

to be able to score the maliciousness of code within datasets based upon their heuristics, where the 

models have no prior-knowledge of the file presented. 
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1. Introduction 

1.1. Overview 
Whilst the idea of combining Computing resources and technical knowledge to solve both human-

social and scientific issues isn't a new concept, the introduction of Machine Learning and the use of 

Artificial Intelligence to solve problems of a grandeur scale is at an unprecedented level.  

The applicability of AI can be seen as implemented at all scales of suitability. Companies such as 

Facebook and Twitter use Artificial Intelligence to learn more about their Users at an individual level, 

tailoring the content that is delivered that is relevant to their interests. Or from a business 

perspective, deliver customised advertising that will bring a much higher rate of ad-revenue because 

of the Users interests.  

Considering, this use of AI is arguably trivial when comparing other implementations of the ground-

breaking technology. Ranging from self-driving Cars to progressing the very forefront of Science with 

Quantum Computing and bio-medical prediction. (Chui et al., 2019) 

This research project will investigate and apply various machine-learning algorithms and models 

against a collated data-set of Portable Executable's, henceforth referenced as PE files for 

identification of their behaviour and intent to a host Operating System  

Microsoft Windows’ PE file is a standard of file-formatting, insisting the structure of various objects 

across the family of Windows Operating System releases.  

This PE structure is a prevalent rule-set that can be found across many file-types; ranging from 

executable files for applications, to text-font files and object files - all essential for functionality of 

the Operating System.  

The Windows PE File comprises of eleven sections. Whilst application Authors can populate these 

sections as desired, each section will contain metadata, informing the Operating System of how the 

file should be processed within the application (e.g. defining it as a executable file rather than an 

object file) (Windows Developer Center, 2019) 

Whilst the Windows Operating System family has evolved, the PE file has continued with little 

variation.  

Microsoft's Windows Operating System has done a remarkable job at maintaining compatibility with 

previous generations of the Windows Operating System. The MS-DOS header within a PE file is an 

excellent example of these efforts of backwards compatibility. This header enables the Operating 

System to process the file and check for compatibility across the whole file. Where there is no 

compatibility, rather than just crashing as the first editions of MS-DOS used too, the Operating 

System will now just inform the User that there is no current compatibility. 
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There can be optional parameters, which are often populated during the development process of 

the software attributed to the PE file. These are not essential for a PE file, for example, an icon that 

is a graphical way of identifying the application to the user. This is illustrated in Figure 1. 

 

 

Figure 1: The Portable Executable (PE) structure with optional parameters (Belaoued, M., Mazouzi, S., 2016) 

1.2. Problem Statement 
This research project will highlight the limitations of current mitigations in place to combat the 

threat of Malware. Signature-based identification is the first-line of defence against the war on 

Malware. 

Signature-based protection solely relies upon the malignant intent of a sample file already being 

identified. This could be through various channels such as manual inspection from an Analyst 

investigating the files behaviour to the pre-cursor knowledge of the behaviours the file exhibits, i.e. 

the file has performed malicious actions on a previous device. 

Due to the biological characteristics of malicious code, the identification of brand-new or “zero-day” 

variants are an on-going "Cat and Mouse" game between both Malware Analyst and Malicious 

threat actor. These threat actors can create a substrate of a pre-existing Malware variant in very 

little time - in comparison to the resources needed for a Malware Analyst to determine the 

heuristics and behaviours of such generated code. 

As Signature-based detection effectively compares a file’s “fingerprint” or signature against a 

predetermined list. These signatures are created from a bit-to-bit accuracy, where any deviation of 

for example, a character will attribute the file with a new signature. This is extremely problematic in 

combatting Malware, as although the malicious intent of the file remains the same, due to fact there 

is a slight deviation, an anti-virus engine using Signature-based detection will treat it as a safe file. 

In the context of Artificial Intelligence, classification is a quintessential concept. From detecting 

animals to the likes of human expression. The proposed research project explores pre-existing 
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classification concepts to create an Artificial Intelligence model capable of detecting new substrates 

of malicious code “on the fly” as opposed to traditional, current capabilities.  

  

1.3. Research Questions 
• What attributes can be found within malicious code that can be used to identify its intent? 

• Do variants of malicious code have similar attributes, and can these common characteristics 

be applied to the same machine-learning model? 

• Can this identification be accurate enough for true-positive classification, in comparison to 

alternative methods such as signature-based detection? 

• What signatures and characteristics do current Anti-Virus engines use to identify and classify 

variants of malicious code?  

• Can any machine-learning model be used to combat new substrates of malicious code from 

procreating and propagating before infection? 

 

1.4. Research Objectives 
To achieve the aim laid out for this research project, the following objectives will be 

investigated: 

Table 1: Overview of the Research Objectives 

1 To investigate the characteristics of malicious code and how these attributes can 
be used by a Machine Learning model for identification. 

2 To assess pre-existing Machine Learning Models and Malware identification 
techniques and understand their effectiveness in identifying malicious code. 

3 To evaluate the reliability and accuracy of a variety of developed Machine 
Learning Models and their performance in detecting malicious heuristics of code, 
identifying and preventing further infection. 
 

 

1.5. Scope 
With Microsoft's Windows Operating System holding a majority 86% market share 

(Netmarketshare., 2019) of the consumer-level market, this research project only investigates 

Malware samples that are compatible with the Microsoft Windows NT Operating System (Windows 

10, Windows 7) as Malware poses a potential fatal risk to Consumers especially - whom may not 

have the expertise to implement an effective disaster-recovery plan. 

Additionally, due to the very nature of Malware, it is sensible to take a precautionary view when 

classifying Malware. This consideration is a prevalent thought throughout the basis of this research 

project. It is extremely risky to assume the classification is always correct – despite the amount of 

training and accuracy scores, Malicious files may be mis-categorised by the model and may lead to 

infection. 

In essence, submitted samples will be point-scored based upon the presence of malicious features– 

rather than categorising them definitively via the various scoring points across the random-forest. 

Finally, the state-changes exhibited from Malware when the program has executed will not be 

investigated and is out-of-scope for this project. 
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1.6. Ethical Issues 
The destructive capabilities of Malware are of grave concern to the integrity of this research project. 

Equalising Malware to a biological virus whom have various means to replicate itself and infect other 

hosts, Malware too has various means to infect other devices. Although a means of infection isn't by 

a characteristic of being airborne like a traditional virus, Malware depending upon its variant can 

infect other devices over a Network - especially in a Local Area Network (LAN) environment. 

Although published datasets containing malware is originated from genuine Malware samples, they 

are un-weaponized, meaning the malicious elements to the sample have been removed. However, 

still contains the characteristics of the variant it is produced from - making it a perfect example for 

entry-level Malware Analysts to investigate without much risk. 

 

1.7. Conclusion 
The following research project illustrates the threat that Malware poses, as well as the daily battle 

imposed on Analysts from the Authors of Malware. Whilst Analysts have introduced methods to 

combat this, for example, signature-based analysis, whom is an effective approach at prevent 

infection against already classified malware. The current common implementations today struggle to 

identify the heuristics of never seen before samples.  

Researchers have investigated into using the common use-cases of Artificial Intelligence such as 

classifiers. Traditional implementations involve detecting between different animals and objects. 

This research project uses the idea of these traditional aims, but rather then detecting different 

animals, will be investigating the features that can be used to detect the maliciousness of software 

on computing Operating Systems. 

Data used to train the model as well as compare results with will be collected through various 

means, one being a mixture of high interaction Honeypots consisting of vulnerable services whom 

are frequently probed and attacked by threat actors such as Remote Desktop and Samba, a file 

sharing service for Windows. Finally, published datasets from other researchers whose samples are 

collated through very similar interactions of vulnerable services. 

 

2. Literature Review 
Malware analysis is a complex and ever-changing topic, containing many features to train a machine 

learning model upon. As (Schultz et al., 2000) proposes, “Eight to ten malicious programs are 

created every day, and most cannot be accurately detected until signatures have been generated for 

them” indicating a huge necessity for real-time analysis to be made to prevent infection on host 

devices.  

This is supported by Symantec, an industry revolutioniser in commercial Anti-Virus engines, whom 

report of “[an increase] in the first six months of 2017, Symantec blocked just over 319,000 

ransomware infections” (Symantec, 2017) evidently, Malware, especially ransomware is on the 

dramatic increase. Case studies such as WannaCry “with infections recorded across 150 countries 

globally” (Nominet, 2017) lightly demonstrate the global and non-target-specific gripe the threat 

poses. 



11 | P a g e  
 

 

 

 

 

Thankfully, there has been some continued investigation into circumventing the limitations that 

signature-based detection retains. For example, (Schultz et al., 2000) created a framework whom 

“automatically extracted a binary profile from each example in [their] dataset” using “properties … 

such as byte sequences”. This is an affective alternative to other frameworks proposed by 

researchers such as (Tesauro, Kephart and Sorkin., 1996) who only achieved a small detection rate 

due to only investigating PC Boot-sector viruses, of which “PC boot sectors are 512 bytes long”. With 

this limited amount of code, there is a very minimal expectation of the features that can be 

extracted.  

When larger datasets containing a lot of features are created, such as that in (Mohaisen, Alrawi and 

Mohaisen, 2015) Consisting of a much larger scale of “115,157 malware samples”.  

Whilst the study “used only a total of 65 features for classification and clustering”, their best 

performing algorithm achieved a 85% accuracy rate. However, it should be noted that their 

performance scale was calculated on both the highest yet most time-efficient algorithm. Other 

explored frameworks may have achieved a higher accuracy score, however at a much higher system-

resource cost.  

This is a noticeable improvement over alternatively suggested frameworks and algorithms such as 

those of (Bayer et al, 2009), whom suggest that “aggressive approximate clustering techniques may 

need to be employed [with much larger datasets]” resulting in a loss of accuracy due to 

generalization. The dramatic decrease in accuracy as cluster – hence dataset sizes increases is shown 

in Figure 2 

 

Figure 2: The dramatic decrease of accuracy Vs. precision in increase of clustering methods (Bayer et al, 2009) 

Arguably, system-resource usage is an expendable commodity in order to achieve a higher 

classification detection rate, especially in a corporate environment. Although, a much larger 

corporate environment such as an Enterprise who faces a vast quantity of advanced persistent 

threats from malicious actors daily. 

Binary classification appears to be a popular and successful approach to solving the issue of Malware 

classification. Binary classification, within the context of extracting information of Malware involves 
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the “process of classifying given document/account on the basis of predefined classes” (Kumari and 

Kr., 2017) 

 

 

To extend the context of this, examples of binary classification is a fundamental basis in Malware 

analysis. Malware Analysts do this manually when investigating individual cases, and algorithms on a 

much-larger scale when classifying. Extracting behavioural patterns from object files such as .dll’s, or 

in the case of (Dhanyasree, Krishnan and Ambikadevi Amma, 2019) both non-verbal and verbal 

communication classes can be collated together to classify the legitimacy of a social-media user 

profile. 

Combining different sets of classes that are extracted from the characteristics and information from 

the object files such as .dll’s and .exe’s will be a fundamental methodology for classification 

throughout this research project. 

Alas, there are very noticeable constraints of statistical analysis of Malware. One simple but fatal 

example of this is code obfuscation. As (Moser, Kruegel and Kirda, 2007) suggests,  

“The values of the arrays […] are crafted such that after [a] for loop, all bits of the first group have 

the correct, final value, while those of the second group depend on the random input” 

Values such as integers for important functions can be populated based upon random number 

generation after execution. Simply, the state in which the malware initially presents itself may end 

up acting differently upon execution. This is a very frequent technique in which sophisticated 

Malware Authors use to bypass anti-virus engines. 

To highlight the impact of this, a file that uses code-obfuscation may be classed as non-malignant. 

However, upon execution, if the file was sent through the classification model again, would be 

classed as malignant. 

Another common – albeit sophisticated approach to avoiding the anti-virus signature-based 

detection is the use of mutation, known as polymorphic code. As (Selamat, Mohd Ali and Abu 

Othman, 2016) proposes, Malware can procreate with similar features and intentions, however 

contain enough differences within their code to appear as a completely new file – hence their 

similarities to the common biological virus. 

Malware common achieves a mutation from a mutagen. This engine utilizes cryptography once a 

system is infected, new code is generated ready for further infection to another host. As this new 

code is randomly generated, the detected signature will not be similar to that of the code that 

caused the initial infection.  

However, (Bazrafshan et al., 2013) introduces to the fact that although malicious code may be 

randomly generated, it does not avoid anti-virus detection by default. They propose that a common 

feature of Malicious code is random Variable name generation. They state that “[although] Changing 

the variable names may confuse human [this] has almost no effect for automated detection 

techniques”  

The research published by (Selamat, Mohd Ali and Abu Othman, 2016) investigated into the 

identification of polymorphic malware. Using a framework such as that of Figure 3. 
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Figure 3: Flowchart illustrating the proposed framework for the identification of polymorphic Malware (Selamat, Mohd Ali 
and Abu Othman, 2016) 
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3. Methodology 

3.1. Overview 
When trying to solve a problem using Classification, there are two significant algorithmic approaches 

that are considered, each with beneficiaries and adversaries that may also go hand-in-hand. 

For instance, the approach of using a decision tree-based model for identifying malicious code seems 

appealing – resembling a flowchart. 

As Figure 4 below shows, a file can be inputted into the algorithm, where it is analysed for certain 

attributes that have been pre-determined as malignant or not. 

 

 

Figure 4: Illustrating the use-case of a decision tree-based machine learning model 

 

Whilst this classification has many benefits, one being that it can deal with large datasets quickly as 

the algorithm essentially follows a checklist. Another being from an Author point of view, it is rather 

quick and easy to develop and train…Any changes made can be replicated across the model almost 

instantly. This would be extremely beneficial if the attributes of the sample file will change 

frequently, a few rule-sets will be changed and the model can adapt to the new parameters well. 

This type of model has no memory of previous-actions, this is a huge disadvantage for this case as it 

cannot self-improve.  

Because of these features, the model will have to be taught the new attributes it is to search for, 

requiring a lot of human-intervention.  

Additionally, not only the complexity of PE Files, but the fact that the PE file is a standardised format 

across all objects on a Windows Operation System, this classification model may prove to be very 

inaccurate, where accuracy is one of the most important influences in this project. 

Figures 5 and 6 highlights that both “malicious” and “clean” files contain similar attributes due to the 

nature of the PE File structure. Specifically, creating a Decision Tree model to solely classify code as 

malicious or not - based upon the presence of a certain attribute such as “Imported Function” will 

henceforth, classify all PE files as “malicious”. This is due to the standardised structure of a PE file 

whom will contain such “Imported Function” attribute, regardless of its intent.  
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Figure 5: A Histogram illustrating an example function “clean” files contain 

 

Figure 6: A Histogram illustrating an example of the same functions that a "malicious" file contains 

As such, a Random Forest based algorithm is explored within this project. A Random Forest 

algorithm can be a self-teaching algorithm, in which previous performance indicators can be 

stored and revisited by the model to improve accuracy by itself, such as malicious intent, and no 

manual input is required.  

This could lead to possible avenue where the model is capable of detecting maliciousness in 

never-seen before files based upon its own previous performance. 
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Figure 7: An implementation of Random-Forest to create a training sample set 

 

A random-forest implementation has seen to have a high accuracy rate across few academics. For 

example, as seen in Figure 8. 

 

 

Figure 8: Line Graph of the accuracy achieved by a random-forest-based framework (K. Raman, 2012) 
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Figures 9 and 10 are an illustration of the proposed experimental algorithm, where we can see how 

the training set is devised from the collated samples and sent through the model multiple times. 

 

 

Figure 9: An illustration of how the model combines both new samples and previous performance from training set for 
continuous learning 
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Figure 10: Illustrating two decision trees within the random-forest algorithm uses to identify maliciousness of samples 
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3.2. Dataset Sampling 
Obtaining a dataset of PE files to use as a clean baseline is imperative for this research project. We 

assume a dataset as clean in the parameters of the samples are collated from a fresh-install of an 

Operating System – in this instance, Windows 7 Professional 32 bit. 

Within this context, the source of the dataset is a “Virtual-Machine” using the commercial-platform 

“VMware Workstation Pro 15” on-top of a Windows 10 Operating System henceforth referred to as 

the Hypervisor. 

A fresh-install of the Operating System onto the Host entails installing the Operating System using a 

digital-replica of the traditional installation disk, with no additions to the post-installation state. It is 

essential that no additional software is installed on this Host, as such action may render the dataset 

as tainted.  

 

 

Figure 11: System Information for "clean" dataset source on Windows 7 Professional (32bit) 

 

The efforts to ensure that the Host remains clean is continued throughout collection of data by 

ensuring the Host remain disconnected from the Internet. An expected procedure of a fresh-install 

of the Windows Operating System is to “call home” and check for security updates. The updates that 

are downloaded are varied based upon numerous factors, such as: 

• Service Pack version 

• License type e.g. Windows Home, Windows Professional 

• 32bit or 64bit 
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This is problematic as these updates introduce a large quantity of variables when collecting the 

dataset. For this research project, we want to keep the baseline as generic - hence applicable as 

possible. 

The samples collected are from “Windows” as this is the Operating System’s Users-abstraction of the 

Kernel-layer. The Operating system at “Levels 2” and “Level 3” is merely an abstraction of the Level 0 

– the Kernel, who is not directly accessed by the User – but through the Operating System itself, as 

visualised in Figure 12. 

 

Figure 12: Operating System "Protection Rings" Diagram (Montana State University, 2005) 

 

In the context of a post-install state, the Host contains an approximate 11,005 .DLL object files. The 

actual result may vary, as some object files are not visible or accessible to the User by the Operating 

System. These will be used as the baseline for the Random Forest model. 
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Figure 13: Graphical Representation of the "clean" dataset taken from a Windows 7 in Post-Installation state 

 

After considering other research projects whom have explored into using machine learning to 

combat Malware, this is considered a suitable dataset sample for clean files. However, whilst 

“malicious” files contain similar functions, the amounts and presence of these can be varied in 

comparison to system files. 

The HoneyBow toolkit, a high-level interaction Honeypot developed by (Zhuge et al., 2006) 

"integrates three malware collection tools ... [rather than emulating, uses] true vulnerable services 

as victims to lure malware infections" this method allows real-case and potentially never seen 

before zero-days to be captured for analysis, whom would truly bypass the traditional signature-

based malware.  

Figures 13 and 14 illustrate the key conceptual differences between high and low level interaction 

Honeypots. 
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Figure 14: Visualisation of a low-level interaction Honeypot 

 

 

Figure 15: Visualisation of a low-level interaction Honeypot 

Combining the use of honeypots and data sample sets from security researchers such as “The Zoo” 

project will provide a sufficiently sized dataset of both “clean” and potentially “malicious” files. 
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Appendix A: Research Comparison & Flowchart 

Comparison Table 
 

Table 2: Comparison of Research Material 

Author(s) RT/F MLF ACC MLC FE TS MSD DT BC HP 
Alam et al., 2015 ✖ ✔ ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✖ 

Bayer et al., 2009 ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✖ 
Bazrafshan et al., 2013 ✖ ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✖ ✖ 

Belaoued, M., Mazouzi, S. 2016 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ 
Chui et al., 2019 ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✖ 

Dhanyasree, Krishnan and Ambikadevi 
Amma, 2019 

✔ ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✖ 

Dolan-Gavitt et al., 2015 ✔ ✖ ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✖ 

Fattori et al., 2015 ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✔ ✖ 

Gavrilut et al., 2009 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ 

Islam et al., 2012 ✖ ✔ ✖ ✖ ✔ ✖ ✔ ✔ ✔ ✖ 

Kumari, R. and Kr., S., 2017 ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✖ 

Mohaisen, A., Alrawi, O. and 

Mohaisen, M. 2015 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Moser, A., Kruegel, C. and Kirda, E., 

(2007) 
✖ ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✖ ✖ 

Nominet., 2017 ✖ ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ 

Raman, K., 2012 ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ 

Rathore, H., Agarwal, S., Sahay, S. 

and Sewak, M., 2018 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Selamat, N., Mohd Ali, F. and Abu 

Othman, N., 2016 
✖ ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✖ 

Sihwail, R., Omar, K., & Ariffin, K. 

A. Z., 2018 
✖ ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✖ 

Symantec., 2017 ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ 

Tesauro, G., Kephart, J. and Sorkin, 

G., 1996 
✔ ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✖ ✖ 

Ucci, D., Aniello, L. and Baldoni, R., 

2019 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ 

Zhuge, et al 2006 ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✔ 

 

KEY: RT/F = Random Tree/Forest, MLF = Malware Feature(s) , ACC= Accuracy, MLC= Machine-

learning Classification, FE = Feature Extraction, TS = Training Set, MSD = Microsoft-DOS, DT = Data 

Mining,    BC = Binary Classification, HP = Honeypot 
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Research Methodology Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B: Gantt Chart  

Expected Dissertation Timeline: 
 

Figure 16: Research Methodology Flowchart 
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Table 3: Expected Dissertation Timeline 

Task 
# 

Task Month Start Month End Progress 

1 Research Machine-Learning Models & Frameworks June  
2019 

December 
2019 

 

1.1 Review academic publications on A.I. and Malware 
Classification 

October December  

1.2 Experiment with Python for Data Handling September October  

1.3. Research into the history of Malware June September  

1.4. Investigate the processes of static & dynamic malware analysis June December  

1.5. Research the use of Honeypots for Dataset collating October November  

1.6. Investigate pre-existing Malware Datasets November November  

1.7. Learn & become familiar with LaTeX October December  

2 Dissertation Proposal October  
2019 

December 
2019 

 

2.1. Propose idea & confirm Dissertation Supervisor October October  

2.2. Begin drafting formal proposal & submit to Hassan & Adam October October  

2.3. Peer-review published academic work from similar fields November November  

2.4. Explore alternative research methodologies to Monte-Carlo October October  

2.5. Produce Literature Review November November  

2.6. First Formal-Meeting w/ Adam for reflection October November  

2.7. Begin collecting example dataset November November  

3. Dissertation December 
2019 

May  
2020 

 

3.1. Reflection meetings w/ Adam for work before next Semester December  
(2019) 

December 
(2019) 

 

3.2.  Development of various classification frameworks in Jupyter January May  

3.3.  Reflect on & Introduce various Dataset sampling methods January May  

3.4. Begin feeding Dataset into machine-learning framework January May  

3.5. Consistent reflections on training output and improvements January May  

3.6. Writing Research Project hand-in December 
(2019) 

May  

3.7.  Prepare for Dissertation Defence Session April May  

 


