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Abstract  

This project investigates Windows PE files, their structures and how these characteristics can be used to identify 

malicious intent using machine learning, implementing and comparing various machine learning / AI algorithms 

and frameworks such as Random Forest, K-Fold and Supervised Learning to try and combat the restrictions of 

static analysis of code and to hopefully prove as an accurate technique that can be implemented into an Anti-

Virus engine alongside traditional methods such as signature-based classification.  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 



 

Page 4 of 55  

  

Table of Contents  

Declaration ............................................................................................................................................................... 2 

Acknowledgements .................................................................................................................................................. 3 

Abstract .................................................................................................................................................................... 3 

Table of Figures ....................................................................................................................................................... 6 

Table of Tables ........................................................................................................................................................ 8 

1. Introduction ..................................................................................................................................................... 9 

2. Problem Statement ............................................................................................................................................... 9 

2.1.  Research Questions ............................................................................................................................ 10 

2.2.  Research Objectives ........................................................................................................................... 11 

2.2.1. Primary ................................................................................................................................................ 11 

2.2.2. Secondary ............................................................................................................................................ 11 

3. Scope ............................................................................................................................................................. 11 

4. Addressing Ethical Concerns ......................................................................................................................... 12 

5. Literature Review .............................................................................................................................................. 13 

5.1. Malware Campaigns ....................................................................................................................................... 13 

6.2. Comparing Classification Algorithms ........................................................................................................ 18 

6.2.1. Decision Tree-based ............................................................................................................................ 18 

6.2.2. Random Forest ..................................................................................................................................... 19 

6.3. Reviewing Proposed Artificial Intelligence Models for Malware Classification ....................................... 22 

6.4. Discussing Proposed Academic Solutions .................................................................................................. 24 

7. Methodology ...................................................................................................................................................... 26 

7.1. Overview ........................................................................................................................................................ 26 



 

Page 5 of 55  

  

7.2.  The Windows Portable Executable Structure ............................................................................................ 26 

7.3. Malware Analysis ....................................................................................................................................... 27 

7.3.1. Feature Extraction................................................................................................................................ 27 

7.3.2. Visualising Malware Similarity ........................................................................................................... 31 

7.3.3. Current Automated Solutions for Malware Classification .................................................................. 35 

7.4.  Dataset Distribution ........................................................................................................................... 36 

7.4.1.  Creating a “clean” Sampleset ......................................................................................................... 36 

7.4.2.  Creating a “malicious” Sampleset ...................................................................................................... 38 

8. Appraising the Applied Machine Learning Techniques .................................................................................... 40 

9.  Results and Analysis .......................................................................................................................... 44 

9.1. Discussing the Measurements of Results ............................................................................................... 44 

9.2. Actual Results ......................................................................................................................................... 46 

10. Conclusions and Discussion of Future Prospects ............................................................................................ 49 

11. References ....................................................................................................................................................... 50 

12. Appendix A: Dataset Statistics ........................................................................................................................ 54 

 

  

  

  

  

  

  

 



 

Page 6 of 55  

  

Table of Figures  

Figure 1: An Illustration Of Why Signature-Based Detection Is Insufficient  (Idika and Mathur., 2007) 

........................................................................................................................................................ 16  

Figure 2: Input, output and properties of hash functions (SANS Institute., 2003) .............................. 17  

Figure 3: Flowchart illustrating the proposed framework for the identification of polymorphic Malware (Selamat 

et al., 2016) ........................................................................................................ 18 

Figure 4: Representation of a decision-tree based classification model in the context of Malware..... 19  

Figure 5: Line Graph of the accuracy achieved by a random-forest-based framework (K. Raman.,  

2012) ............................................................................................................................................... 20  

Figure 6: A flowchart presenting as a  Random Forest algorithm, a complex decision tree 

algorithm........................................................................................................................................................ 22  

Figure 7: An illustration of how the model combines both new samples and previous performance  

from a training set for continuous learning.......................................................................................... 23  

Figure 8: The dramatic decrease in accuracy Vs. precision in the increase of clustering methods  

(Bayer et al., 2009) .......................................................................................................................... 24  

Figure 9: Content within the sections of a Windows PE file visualised as 8-bit greyscale (Nataraj et  

al., .2011) ........................................................................................................................................ 25  

Figure 10: Using the 255-bit RGB channels as features for malware classification (Fu et al., 2018) .. 26  

Figure 11: (Nataraj., et al., 2011) precision scoring of their framework. ........................................... 27  

Figure 12: Three Generated Hyper-Planes To Classify Two Shapes.  (Ray., 2017) ........................... 27  

Figure 13: The Portable Executable (PE) structure with optional parameters (Belaoued. M, et al.,  

2016) ............................................................................................................................................... 29  

Figure 14: Quantifying the "imported functions" of the “malware” dataset ....................................... 30  

Figure 15: Quantifying the "imported functions" of the "clean" dataset ............................................ 30  

Figure 16: Bitcoin addresses used for payment within Wannacry, stored as strings within the 

sample......................................................................................................................................................... 31  

Figure 17: Import Functions stored within a Wannacry sample. These would be extracted by the 

classifier.......................................................................................................................................... 32  

Figure 18: Comparison of the data values in respective "overfitting" and "underfitting" scenarios (Amazon Web 

Services., 2016)........................................................................................................ 32  



 

Page 7 of 55  

  

Figure 19: Calculating the cryptographic checksums of the eighteen samples in this dataset. ............ 33  

Figure 20: Domain TLD's recognised by the implemented application ............................................. 34  

Figure 21: Generated output displaying similarities between two samples ........................................ 34  

Figure 22: Verifying networking communication performed by the sample ...................................... 34  

Figure 23: A false-positive identification of similarity between two samples .................................... 35  

Figure 24: Example of how one presented file can be self-containing much more malicious content. 35  

Figure 25: Visualisation of a sample contacting four domains .......................................................... 36  

Figure 26: Large scale abstraction of eleven samples contacting a domain ....................................... 36  

Figure 27: Scaled-up abstraction of three samples out of the generated output .................................. 36  

Figure 28: A suspicious domain contacted by the sample ................................................................. 37  

Figure 29: Suspicious IT devices contacted by the sample................................................................ 37  

Figure 30: Details of the environment used for the abstraction of samples for the "clean" dataset ..... 39  

Figure 31: Operating System "Protection Rings" Diagram (Montana State University., 2005) .......... 40  

Figure 32: Visualisation of a low-level interaction Honeypot ........................................................... 41  

Figure 33: Visualisation of a high-level interaction Honeypot .......................................................... 42  

Figure 34: First 10 files of the clean dataset extracted and described in Jupyter using Matplotlib ...... 43  

Figure 35: A correlation matrix of the features between the two datasets used in the classifier.......... 44  

Figure 36: First five files of the clean dataset ................................................................................... 44  

Figure 37: First five files of the malicious dataset ............................................................................ 45  

Figure 38: The "malware" dataset being appended with a "Malware" classification for the training 

set........................................................................................................................................................ 45  

Figure 39: The "clean" dataset being appended with a "Malware" classification for the training set . 46  

Figure 40: Two samples from both datasets being removed from classification to be set aside for a  

testing parameter ............................................................................................................................. 46  

Figure 41: The split-up of the dataset into "Testing" and "Training" respectively ............................. 47  

Figure 42: Recall label calculated from TP / (TP + FP) .................................................................... 48  

Figure 43: Precision label calculated from TP / ( TP + FN) .............................................................. 48  

Figure 44: Equation for how Micro-Average Precision value is calculated ....................................... 48  



 

Page 8 of 55  

  

Figure 45: Equation for how Macro-Average Precision value is calculated ....................................... 48  

Figure 46: Report of the accuracy results of the P and R labels for a classifier using Logistic 

Regression....................................................................................................................................... 49 

Figure 47: Mathematical equation of how the number of neighbours is calculated in K-Nearest  

Neighbours...................................................................................................................................... 50  

Figure 48: Report of the accuracy results of the P and R labels for a classifier using K-Nearest 

Neighbours...................................................................................................................................... 50  

Figure 49:  Report of the accuracy results of the P and R labels for a classifier using Random Forest 51  

Figure 50: Calculation of "leaf" importance ..................................................................................... 51  

Figure 51: Equation formulating how leaves are created and split across decision trees (Ronaghan.,  

2018) ............................................................................................................................................... 52  

Figure 52: First 10 files of the "malware" dataset in Jupyter Notebook ............................................. 57  

Figure 53: First 10 files of the "clean" dataset in Jupyter Notebook .................................................. 58  

  

Table of Tables  

Table 1: Outlining the Research Objectives ..................................................................................... 11  

Table 2: Primary Research Objectives ............................................................................................. 12  

Table 3: Secondary Research Objectives .......................................................................................... 12  

Table 4: Results of Anti-Virus Engine detection after obfuscating known samples with an opaque  

constants technique (Moser et al., 2007) .......................................................................................... 17  

Table 5: Dataset Distribution ........................................................................................................... 57  

 

 

 

 

 

 

 



 

Page 9 of 55  

  

1. Introduction 

Whilst the idea of combining both computing resources and technical knowledge to solve human 

social and scientific issues isn't a new concept, the introduction of Machine Learning and the use of 

Artificial Intelligence (A.I) to solve problems of a grander scale is at an unprecedented level.    

The applicability of A.I can be seen as implemented at all scales of suitability. Companies such as 

Facebook and Twitter use Artificial Intelligence to learn more about their Users at an individual 

level, tailoring the content that is delivered that is relevant to their interests. Or from a business 

perspective, deliver customized advertising that will bring a much higher rate of ad-revenue 

because of the user's interests.    

Considering, this use of A.I is arguably trivial when comparing other implementations of the ground-

breaking technology; ranging from self-driving cars to progressing the very forefront of Science with 

Quantum Computing and bio-medical prediction. (Chui et al., 2019).  

  

2. Problem Statement  

The following research project will demonstrate the current threats that both consumers and 

organizations face against the ever-evolving “cat and mouse game” between malware authors and 

analysts. Current mitigations to this dynamic and prolific problem are simply not sufficient in 

protecting Information Technology (IT) devices as demonstrated through an enormous sample of study 

cases such as the Wannacry ransomware campaign – crippling the devices that power the very pillars 

of society as we know it, such as the National Health Service.   

Akin to a real-life comparison of Police forces combatting crime in communities, malware analysts 

are arguably “reactionary” based rather than “preventative” – only able to respond once an incident, 

such as an infection of a device or network has occurred. “Signature-based” identification is the 

first line of defence employed by malware analysts on the war against malware. These “signatures” 

are unique bit-for-bit fingerprints abstractions of a sample; Used amongst the malware analyst 

community for identification. From this attribution, preventative mechanisms can be implemented 

where the sample can be detected in future appearances, where the infection-rate can be measured, 

but more so to prevent infection of other IT devices.  

However, this critical component in combatting the infection of malware relies upon an IT device 

already being infected, additionally relies on the time consuming, detailed analysis of the exact strain – 

where the sample can infect numerous devices in the meanwhile.  
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Because of this bit-for-bit fingerprint, a single change within the sample, such as a character change like 

an Internet Protocol (IP) address will generate an entirely new “signature”, where the maliciousness of 

this new sample will be unknown to the preventative mechanisms, despite its behaviours not changing 

in comparison. Rather comparable to the biological flu or cold, a very simple change in its substrate 

will render a vaccination ineffective. This is especially problematic for malware analysts, as authors of 

this malicious code can adapt their program with very little resources including time, finances, and 

motivations in comparison to those available to a malware analyst.  

  

2.1. Research Questions  

To provide a solution to the current limitations induced from prevention mechanisms such as  

“signature-based” detection a couple of questions such as the following need to be asked, to ensure 

the highest possible true-positive identification of malware:  
 

Table 1: Outlining the Research Objectives 

1   What attributes can be found within malicious code that can be used to identify 

its intent?   

2   Do variants of malicious code have similar attributes and can these common 

characteristics be applied to the same machine-learning model for 

classification?   

3  Can this identification be accurate enough for true-positive classification, in 

comparison to alternative methods such as signature-based detection that relies 

upon previous analysis of the same sample?  

4  What signatures and characteristics of malicious samples do current Anti  

Virus (A.V) engines use to identify and classify variants of malicious code?  

5  Can any machine-learning model be used to combat new substrates of 

malicious code from procreating and propagating before infection of any IT 

devices without the skillset of a malware analyst?  
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2.2. Research Objectives  

2.2.1. Primary  
Table 2: Primary Research Objectives 

1   To investigate the characteristics of malicious code and how these attributes can be 

used by a Machine Learning model for identification.   

2   To assess pre-existing Machine Learning models and malware identification 

techniques and understand their effectiveness in identifying malicious code.   

3   To evaluate the performance metrics in terms of reliability and accuracy of a 

variety of developed Machine Learning models and their performance in detecting 

malicious heuristics of code, identifying and preventing further infection.   

   

  

2.2.2. Secondary  
Table 3: Secondary Research Objectives 

1   Can this solution be combined with pre-existing techniques such as “signature-

based” analysis to prevent an IT device from being infected?  

2   Perhaps the proposed solution can be combined with the method of malware 

analysis via sandboxing  

3   Appraising standard industry techniques of collating real-world current malware 

samples for malware analysis  

  

3. Scope  

With Microsoft's Windows Operating System holding a majority 86% market share   

(Netmarketshare., 2019) of the consumer-level market, this research project only investigates   

Malware samples that are compatible with the Microsoft Windows NT Operating System such as 

Windows 10 and Windows 7 pose a potentially disastrous risk to consumers data and privacy especially 

– who are not expected to have the expertise or resources to implement an effective disaster recovery 

plan such as that of an organisation, where there will be personnel solely responsible for such recovery 

plan.  

Additionally, due to the very nature of malware, it is sensible to take a precautionary view when 

classifying malware. It is safer to over-classify then to under-classify. This consideration is a prevalent 

thought throughout the basis of this research project. 
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It is dangerous to assume and renders the project unsuccessful that the classification is always correct – 

despite the amount of training and accuracy scores, malicious files can be very easily miscategorized by 

the model due to the limitations faced by using static analysis (where the sample’s presented behaviour 

may change after execution) and lead to infection, from the off-set this possibility has been factored into 

the tolerance of the classification results by using the median of the statistics that we will come to discuss 

further.  

With this in mind, the “success” of the implementation from this research project will be calculated 

from the comparison of its true-positive and false-positive outcomes from classification. Alternative 

methods have been proposed to help alleviate the issues faced by static malware analysis such as 

the use of sandboxing (running the samples in a protected environment to monitor the actual 

behaviours). However, research into the use of this is out-of-scope for this project.   

In essence, submitted samples will be point-scored based upon the presence of malicious features– 

rather than categorising them definitively as either malicious or not. Moreover, the proposed 

solution is not a mechanism towards preventing infection of an IT device such as the function 

provided by an A.V engine, but rather a proposition of a technique that vendors of these products 

could integrate into their applications to supplement more traditional methods like “signature-based” 

detection.  

Finally, the state-changes exhibited from malware when the program has executed will not be investigated 

and is out-of-scope for this project such as methods of persistence or network activity. However, some of 

these features exhibited are discussed later as potential aspirations for the research project.   

 

4. Addressing Ethical Concerns  

The destructive capabilities of malware are of grave concern to the integrity of this research project. 

Equalising malware to a biological virus which has a variety of means to replicate itself and infect 

other hosts, malware to has various means and efforts to infect other devices.   

Although a means of infection is not by a characteristic of being airborne like a traditional virus, 

malware, depending upon its variant, can infect other IT devices over a network - especially in a 

Local Area Network (LAN) environment. With this in mind, the environment upon which the 

malware is stored, processed and modelled upon is completely isolated from any other IT device in a 

“sandbox” environment, where the assumption is that the environment will eventually be rendered 

unusable/infected from a sample, but has been designed so that no progress is lost – nor will such 

infection result in interfering with other IT devices outside of the specified scope.  
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Although published datasets for malware analysis with machine learning is derived from genuine 

malware samples, they are often un-weaponized, meaning the malicious characteristics to the 

sample have been removed (such as the encryption stage of ransomware).  

Because of this, these datasets are only applicable for the development of machine learning models 

or the learning of analysis techniques, however, still contains the characteristics of the variant it is 

produced from - making it a perfect example for entry-level malware analysts to investigate without 

a high level of detrimental risk to IT devices. 

 

5. Literature Review  

5.1. Malware Campaigns  

Malware analysis is a complex and ever-changing topic, containing many features to train a machine 

learning model upon. As (Schultz et al., 2000) proposes, “Eight to ten malicious programs are 

created every day, and most cannot be accurately detected until signatures have been generated for 

them” indicating a huge necessity for real-time analysis to be made to prevent infection on host IT 

devices.    

This is supported by Symantec, an industry revolutionary in commercial A.V engines, who report of “[an 

increase] in the first six months of 2017, Symantec blocked just over 319,000 ransomware infections” 

(Symantec., 2017) evidently, the infection of malware across IT devices -especially ransomware - is on 

the dramatic increase. Case studies such as WannaCry “with infections recorded across 150 countries 

globally” (Nominet., 2017) lightly demonstrate the global and non-target-specific gripe the threat that 

malware poses to both consumers and organisations.  

Alas, there are very noticeable constraints of statistical analysis of malware. One simple but fatal example 

of this is code obfuscation. As (Moser., Kruegel and Kirda., 2007) suggests,    

“The values of the arrays […] are crafted such that after [a] for loop, all bits of the first group have the 

correct, final value, while those of the second group depend on the random input”.   

Values such as integers for important functions can be populated based upon random number 

generation after execution. Simply, the state in which the malware initially presents itself April end 

up acting differently upon execution. This is a very frequent technique in which sophisticated 

malware Authors use to bypass A.V engines. Due to the limitations of static analysis – namely the 

fact that the file is inspected without any execution, certain patterns and behaviours are missed such 

as a sample piece of ransomware “calling home” to a botnet and/or command and control (C2C) 

server for instruction.  



 

Page 14 of 55  

  

As Sophos, an industry leader in Cybersecurity and IT infrastructure protection informs, malware 

variants such as ransomware uses external IT devices – these C2C servers to retrieve encryption 

keys which are fundamental to the software’s purpose. Sophos also states that ransomware 

“normally uses the standard port 80 and HTTP or port 443 and HTTPS protocols” (Ransomware: 

How an attack works - Sophos Community., 2020).  

These common protocols are fundamental in day-to-day interaction between user and IT device. 

For example, the HTTP protocol on the standardised port of 80 is seen as normal web traffic, so 

any communication through this port is often un-checked by protection mechanisms such as 

firewalls within an organisation. This ransomware is a great example of how the analysis of these 

behaviours is very important in classification.   

The sorts of behaviours expected from ransomware such as encryption are missed because no 

cryptographic function takes place until there is an execution of the file, where this is not 

performed during static analysis and is only detectable in either dynamic analysis (real-time 

execution and inspection of the file) or using static analysis techniques and tools to detect the 

possible feature of encryption – such as the presence of a cryptographic library. The presence of 

libraries such as this is not entirely indicative of the intent of a sample as many legitimate 

applications employ libraries utilising cryptography.  

To highlight the impact of this, a file that uses code obfuscation may be classed as non-malignant. 

Software authors use code obfuscation to protect their work from pirating and so forth. However, 

upon execution, if the file were sent through the classification model again in its executed state, 

would henceforth be classed as malignant due to the features and behaviours now presented. This is 

problematic because this could create false positives within the training set, or at minimum lead to 

suspicious files being completely missed.  

Another common - albeit sophisticated - approach to avoiding AV signature-based detection 

is the use of mutation, known as polymorphic code. As (Selamat., Mohd Ali and Abu 

Othman., 2016) proposes, malware can procreate with similar features and intentions, 

however, contain enough differences within their code to appear as a completely new file – 

hence their similarities to the common biological virus, a very common technique in evading 

A.V engines who employ “signature-based” detection mechanisms.   
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As Figure 1 illustrates, classification based upon a files “signature” is wholly insufficient for 

an accurate result.  

  

Figure 1: An Illustration Of Why Signature-Based Detection Is Insufficient  (Idika and Mathur., 2007)  

As we can see, the signatures known to an A.V engine is never a true representation of all malicious 

behaviours a file could perform.   

Whilst the variation between these two factors will be different across various A.V. platforms 

and arguably not as drastic for some engines, the disparity is still present, nonetheless.  

Malware commonly achieves a mutation from a mutagen. This mutation engine utilizes cryptography 

once a system is infected – a new code structure is generated ready for further infection to another host 

and therefore bypassing any known signature rules from an Anti-Virus engine.  

A prime example of polymorphic code is ransomware. Encrypting victims’ files, ransomware is 

akin to the traditional highwayman. Utilising random cryptographic keys, these are individually 

generated mathematical operations, ultimately resulting in the withholding of information by the 

attacker. As this new code is randomly generated, this new mutagen will be distant enough to that 

of the original code base that caused the initial infection, so will not be detected from A.V engines. 

(Sharma and K. Sahay, 2014)  

Sophisticated A.V. engines often use a combination of techniques to identify malicious code such 

as the previously mentioned “signature-based” technique. Utilising the hashing suite of 

cryptography, hashing at its fundamental is the process of calculating a fixed-length abstraction 

from data. Signature-based analysis at a premise, looks for specific behaviours or features of a 

sample and compares their relativity against already confirmed malicious samples. 
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Figure 2: Input, output and properties of hash functions (SANS Institute., 2003)  

However, (Bazrafshan et al., 2013) introduces the fact that although malicious code may employ 

techniques such as polymorphic code, modern-day A.V engines employ further techniques for 

classification than just signature-based. This does, however, vary between A.V. products and as a 

result, the same sample may remain undetected by an A.V engine. They propose that a common 

feature of malicious code is a random “variable name” generation.  

They state that “[although] Changing the variable names may confuse human [this] has almost no 

effect for automated detection techniques”. On the other hand, the possibility of A.V engines and 

machine learning models being able to recognise patterns in obfuscated code is contested by 

(Moser et al., 2007) who applied a total of four custom code obfuscation techniques to malicious 

samples, where these samples were then run through four commercial A.V. engines, the results of 

this within Table 4 below.  

Table 4: Results of Anti-Virus Engine detection after obfuscating known samples with an opaque constants technique (Moser et 

al., 2007) 

  Klez.A  MyDoom.A  MyDoom.AF  

McAfee    X    

Kaspersky  X  X  X  

AntiVir      X  

Ikarus  X  X  X  

 

Applying their best performing algorithm, there was a 66.66% success rate in detecting malicious 

code, even after obfuscation, where it is theorised that this would be impossible by the works of 

(Bazrafshan et al., 2013).   
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Comparing these two-academic works, (Islam et al., 2013), proposes that this disparity in the 

argument is due to the necessary adaptation of focus into the “determination of features that can 

identify malicious behaviour as a process instead of employing a unique signature”; Involving 

the process of extracting other features such as external API calls and libraries – rather than 

analysing and decompiling code (which is the path this research project takes).   

The research published by (Selamat et al., 2016) investigated the identification of polymorphic malware. 

Using a framework such as that of Figure 3 below. 

  

Figure 3: Flowchart illustrating the proposed framework for the identification of polymorphic Malware (Selamat et al.,  
2016)  
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6.2. Comparing Classification Algorithms  

6.2.1. Decision Tree-based  

Much akin to that of how humans interact with the world on a day-to-day basis, for example, evaluating 

factors such as the weather and temperature to decide if they should wear a jacket before leaving the 

house,  a decision tree-based algorithm, such as logistic regression, is a supervised learning model that 

predicts a result based upon the presence of features, as detected by nodes placed throughout this 

model.   

Due to the components of this type of model, it is very granular in nature, where each node can be 

finely tuned to detect and assign a score on the presence of programmed values. However, because of 

this ability to be so clearly defined, these decision trees can inadvertently become biased by the author, 

resulting in invalid results.  

Contextualising this algorithm, nodes can be programmed to “point score” based upon the presence of 

a malicious attribute presented within a sample. Illustrated in Figure 4 below, each attribute will hold a 

certain weight - or score. The final decision on whether not a sample is classed as malicious or not will 

be as a result of the accumulation of the characteristics (and in turn, the number of points scored in 

this context) by the nodes present. The diagram below demonstrates the various stages that points are 

scored – similarly to decision trees.  

  

  

Figure 4: Representation of a decision-tree based classification model in the context of Malware  
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Whilst this classification algorithm has numerous benefits, such as its ability to have nodes adjusted, nodes 

are treated individually, so any adjustments made do not influence another node's performance.  

Unfortunately, it is extremely system resource-intensive, especially with large datasets according to  

(Anyanwu and Shiva., 2009), who also reinforce the popularity of this model due to its  

approachability in understanding to implement. In the instance of this research project, it is unsuitable due 

to the complexity of the datasets provided, but moreover due to the necessity of substantial datasets. In 

result, the larger a dataset - the more nodes - requiring more human intervention & calibration of how 

these points are scored and ultimately leading to an increased risk of overfitting.  

6.2.2. Random Forest  

A random-forest implementation has seen to have a high accuracy rate across a few academics such 

as those discussed throughout the review of literature, namely the framework created by (K.  

Raman., 2012). For example, as seen in Figure 5.   

  

Figure 5: Line Graph of the accuracy achieved by a random-forest-based framework (K. Raman., 2012)  

Less prone to overfitting, Random Forest algorithms, unlike the decision tree algorithm does not 

process the entire dataset in one iteration. Instead, this algorithm reduces its accuracy disparity by 

splitting datasets based upon provided values, where it will only test for a small subsection of features. 

At its essence, Random Forests are cohorts of multiple decision trees and perform in a nonsupervised 

manner (Breiman and Cutler., 2004). Because of this, these models are hard to program and require a 

quantifiable amount of epochs (iterations), more so due to the fact that the nodes contained are self-

sufficient, where each iteration will select a random set of predefined features to use for classification. 

For example, each epoch may only use eight out of thirty possible features in a dataset.  
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There may only be two important features present as a parameter in this epoch, where in fact another 

epoch could have used a total of twelve important features that are indicators of maliciousness. The 

sequential epoch could be classifying a sample with a different “point scoring” system in comparison 

to the first epoch, and result in both higher false-negative and false-positive ratios.  

Whilst this model has knowledge of previous epochs as illustrated in Figure 6 on the page below, it is 

argued by (Denil, Matheson and Freitas, 2014) that the causes of success in Random Forest are not 

well understood, nor traceable due to the mathematical randomness of how nodes within its decision 

trees are split for each epoch.   
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Figure 6: A flowchart presenting as a  Random Forest algorithm, a complex decision tree algorithm.  
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The self-expansive nature of Random Forests is reflected in Figure 7, adding context to this algorithm 

using the research project, the creation process of the training set is outlined, including how it is 

devised from the collated samples and iterated through the model multiple times in these epochs.   

   

  

Figure 7: An illustration of how the model combines both new samples and previous performance from the training set for 

continuous learning  

6.3. Reviewing Proposed Artificial Intelligence Models for Malware Classification  

Thankfully, there has been some continued investigation into circumventing the limitations that signature-based 

detection retains. For example, (Schultz et al., 2000) created a framework whom “automatically extracted a 

binary profile from each example in [their] dataset” using “properties … such as byte sequences”. This is an 

effective alternative to other frameworks proposed by researchers such as (Tesauro., Kephart and Sorkin., 

1996) who only achieved a small detection rate due to only investigating PC Boot-sector viruses, of which “PC 

boot sectors are 512 bytes long”.  

 

With this limited amount of code, there is a very minimal expectation of the features that can be extracted. 

When larger datasets containing a lot of features are created, such as that used by (A. Mohaisen., M. 

Mohaisen., 2015) consists of a much larger scale of “115,157 malware samples”. Whilst this study “used only a 

total of 65 features for classification and clustering”, their best performing algorithm achieved an 85% 

accuracy rate. However, it should be noted that their performance scale was calculated on both the highest yet 

most time-efficient algorithm. 
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Other explored frameworks may have achieved a higher accuracy score, however at a much higher system 

resource cost or timeframe, which is impractical in a real-world scenario such as implementation within a large 

organisation. For example, (A. Mohaisen., M. Mohaisen., 2015) used an unsupervised learning technique, 

whilst at a much larger cost of computing resources, achieved “more than 98%” accuracy in their datasets. 

   

This is a noticeable improvement over alternatively suggested frameworks and algorithms such as those 

of (Bayer et al., 2009), who suggest that “aggressive approximate clustering techniques may need to be 

employed [with much larger datasets]” resulting in a loss of accuracy due to generalization. The 

dramatic decrease in accuracy as a cluster – hence dataset sizes increases is shown in Figure 8.  

  

Figure 8: The dramatic decrease in accuracy Vs. precision in the increase of clustering methods (Bayer et al., 2009)  

What is an apparent necessity for machine learning models is a large dataset – especially in the 

context of malware due to the vast range of variants for clustering classification techniques. Creating a 

simple classifier such as one that uses a select handful of features for classification i.e. determining if 

a provided picture is a cat or a dog alone still requires a sizeable dataset – often within the hundreds if 

not thousands - for accurate classification at the expense of computing resources to process such 

quantities of data in large epochs.  

Binary classification appears to be a popular and successful approach to solving the issue of malware 

classification. Binary classification, within the context of extracting information of malware, 

involves the “process of classifying given document/account on the basis of predefined classes” 

(Kumari and Kr., 2017).  To extend the context of this, examples of binary classification is a 

fundamental basis in malware analysis. Malware Analysts do this manually when investigating 

individual cases, and algorithms on a much larger scale when classifying.   

Extracting behavioural patterns from object files such as .dll’s, or in the case of (Dhanyasree., 

Krishnan and Ambikadevi Amma., 2019) both non-verbal and verbal communication classes can be 

collated together to classify the legitimacy of a social-media user profile.   
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Combining different sets of classes that are extracted from the characteristics and information from 

the object files such as .dll’s and .exe’s will be a fundamental methodology for classification 

throughout this research project.  

6.4. Discussing Proposed Academic Solutions  

Data scientists have been employing traditional machine learning techniques in the classification of 

malicious code. Using image classification techniques where patterns are extrapolated and visualised 

into the human RGB formatting, the variation of data values range from three values of 255, where 

each variation results in an individual pixel – creating a unique, graphical abstraction of machine code. 

 For example, the academic publishings from (Nataraj et al., 2011) proposes a framework actioning the 

extraction of features present within samples are represented and contextualised into an 8-bit vector 

graphic such as that of Figure 9, where the four essential hallmarks of a windows PE file sections are 

devised and the distribution of code within these sections are clearly identifiable.  

  

Figure 9: Content within the sections of a Windows PE file visualised as 8-bit greyscale (Nataraj et al., .2011)  

A classifier will be capable of recognising the presence of numerical values, in this case, along a greyscale, 

and classify based the difference of these visual characteristics.   

Rather then extracting strings from samples within the dataset and storing within dictionaries, frameworks 

portray elements including these strings for comparative analysis.  
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Whilst they achieved a classification rate of 98%, their framework was only implemented to classify 

samples of malware into respective families. Due to the characteristics of malware - namely the 

expectation of similarly placed bit-for-bit machine code - a classifier of this nature is expected to have a 

significant true-positive ratio. However, academic work such as that by (Fu et al., 2018) uses the full 

range of these possible RGB values (rather than greyscale) to classify samples, akin to that of Figure 10 

below. 

  

Figure 10: Using the 255-bit RGB channels as features for malware classification (Fu et al., 2018)  

More RGB values permit specific characteristics of a sample to be identified from another, where 

these may have been lost in an 8-bit vector due to having fewer colours to portray as - allowing for 

machine learning models to process more characteristics of a sample. As a result, they are more 

accurate then classifiers using 8-bit vectors but at a much more intense computing resource usage. 

Whereas (Nataraj et al., 2011) uses a comparably limited feature vector range of 320, (Fu et al., 2018) 

uses an extracted vector range of twenty per pixel across three 255 colour channels – unlike the 8-bit 

greyscale alternative; Making their classifier a lot more complicated, and higher computational cost, they 

achieved a precision accuracy of 99% of being able to both classify malicious intent & categorise variant 

shown in Figure 11 below.   

 

Figure 11: (Nataraj., et al., 2011) precision scoring of their framework.  
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Their framework reinforced the use of a K-nearest neighbours algorithm in a large-scale dataset due to the 

reduced growth in classifier training time, whereas a support vector algorithm uses hyper-planes to categorise 

samples, where the author is to select the hyper-planes of most value to the right categorisation such as in the 

scenario of Figure 12. 

 

Figure 12: Three Generated Hyper-Planes To Classify Two Shapes.  (Ray., 2017) 

 

7. Methodology  

7.1. Overview  

When trying to solve a problem using machine learning, there are two significant algorithmic 

approaches that are considered, each with beneficiaries and adversaries that need to be pitted against 

each other on a per-scenario basis. 

7.2.  The Windows Portable Executable Structure  

Microsoft Windows’ PE file is a standard of file-formatting, insisting the structure of various objects 

across the family of Windows Operating System releases.    

This PE structure is a prevalent ruleset that can be found across many file-types; ranging from 

executable files for applications to text-font files and object files - all essential for the functionality of 

an Operating System.    

The Windows PE File comprises of eleven sections. Whilst application Authors can populate 

these sections as desired, each section will contain metadata, informing the Operating System of 

how the file should be processed within the application (e.g. defining it as an executable file rather 

than an object file) (Windows Developer Center., 2020) whilst the Windows Operating System 

family has evolved, the PE file has continued with little variation.    
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Microsoft's Windows Operating System has done a remarkable job at maintaining compatibility 

with previous generations of the Windows Operating System. The MS-DOS header within a PE file 

is an excellent example of these efforts of backwards compatibility. This header enables the 

Operating System to process the file and check for compatibility across the entire hierarchy of the 

file itself. Where there is no compatibility, rather than just crashing such as the behaviours of the 

first editions of MS-DOS used too, the Operating System will now just inform the user that there is 

no current compatibility.   

  

Figure 13: The Portable Executable (PE) structure with optional parameters (Belaoued. M, et al., 2016)  

  

There can be optional parameters, which are often populated during the development process of the software 

attributed to the PE file. These are not essential for a PE file, for example, an icon that is a graphical way of 

identifying the application to the user. This is illustrated in Figure 13.   

Knowledge of this structure, including the objects (or features) an executable can contain, is paramount 

to the feature extraction process of this research project.  

  

7.3. Malware Analysis  

7.3.1. Feature Extraction  

An unequivocal necessity of using artificial intelligence to solve real-world problems is the use of 

feature extraction. From an observers perspective, the sample set is a mere abstraction of files – whilst 

their contents are of the Windows PE structure, these characteristics are plentiful and largely 

unnecessary as reviewed throughout other academic work and implementations. Feature extraction is 

the processing of data to generate values that are useful to the machine learning model whilst ignoring 
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those that are not. In the context of this research project, characteristics of the Windows PE structure 

are copious and mostly unnecessary for classification. For example, the compatibility header of the 

Windows PE file. The value stored within this is unnecessary in this implementation because the file is 

never executed – as it is only processed at its face value, there is no Operating System-level 

operability is needed, just that the file is indeed a Windows PE file.  

For example, the number of Import functions an executable has a notable correlation between the maliciousness 

of a file. This is illustrated in comparing both Figure 14 and Figure 15.  

 

Figure 14: Quantifying the "imported functions" of the “malware” dataset  

  

Where a total of ninety-two malicious executables have the import function count of between fifteen 

and seventy-three import functions. This is comparable to the numerical presence of import functions 

in the clean dataset, amounting to a much wider range of import functions in ninety-two executables.   

The sample-set in this dataset has between zero and 470 import functions – a significant increase in comparison. 

 

Figure 15: Quantifying the "imported functions" of the "clean" dataset  



 

Page 29 of 55  

  

 

The disparity in figures like this may serve as influential roles in the maliciousness of executables.  

Namely “clean” samples such as software installers are often much more complicated then samples 

such with an agenda of ransomware or contain features that these clean, non-malignant samples won’t, 

such as IP addresses and bitcoin wallets to name a few. Arguably there is no reason for standard 

executables to contain hardcoded networking values such as IP addresses. This idea is reinforced in 

the analysis of a Wannacry sample where there are only forty-two imports. Specifically directory 

traversal and cryptographic functions, but also contains a bitcoin wallet for payment as a hardcoded 

value stored within a string as illustrated in Figure 16, again, using Wannacry as an example.   

  

Figure 16: Bitcoin addresses used for payment within Wannacry, stored as strings within the sample.  
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Figure 17: Import Functions stored within a Wannacry sample. These would be extracted by the classifier  

  

Careful consideration into the features extracted for use within the machine learning model is vital, this 

is due to not only the value that certain features contain in attributing the maliciousness intent of a 

sample such as those discussed, but also to prevent overfitting and a reasonable training and 

classification time throughout the implementation. Furthermore, it is imperative to balance the risk of 

overfitting and underfitting.  

  

Figure 18: Comparison of the data values in respective "overfitting" and "underfitting" scenarios (Amazon Web Services.,  
2016)  
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7.3.2. Visualising Malware Similarity  

An arguably less sophisticated application - albeit equally informative, of data science in the context of 

Malware is the case of similarity graphing and comparison. Again applying feature extraction 

techniques, features such as strings or networking information can be extricated from Windows PE 

files. Once collated, the values such as domain names can be used to build a malware sample 

identification framework, much rather than a classification framework that classifies samples based 

upon the presence of malicious intent. To develop on this, as samples are commonly referenced to 

within the information security community by their cryptographic MD5 or SHA-1 fingerprint, the 

name of the APT threat is often unknown, especially for new samples. Being able to run a sample 

through a framework such as this will allow APT campaigns to be identified and tracked a lot with 

more efficiency - assuming that a former sample of this campaign has been identified. This problem is 

identified in Figure 19 below, where eighteen samples with unique names as of result their MD5 

hashes have the exact bit-for-bit file size as each other.  

  

Figure 19: Calculating the cryptographic checksums of the eighteen samples in this dataset.  

  

It is logical to assume that these samples are of the same APT campaign due to their exact file sizes, 

despite their different file names. However, to confirm this, every file will have to be analysed – a 

lengthy process for a malware analyst; this is a minute example of large datasets that April have hundreds 

of these similarly presented files.  

In this implementation, the samples are analysed by extracting their strings – who often contain 

hardcoded networking information such as domain names and/or IP addresses. The framework looks for 

the domain name TLDs or suffixes in Figure 20 below, where any presence is stored within the 

framework in case any other sample has the same domain name suffix.   
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Figure 20: Domain TLD's recognised by the implemented application  

  

If another sample has the same domain name suffix, it is rendered into a graph using GraphViz, creating 

a visualisation of that in Figure 21.  

  

  

Figure 21: Generated output displaying similarities between two samples  

  

Out of the eighteen analysed samples, only two were identified as being similar. When these files are run 

through online sandboxing, they are identified as being apart of the Wannacry APT campaign.  

Illustrated in Figure 22 , sample “6b9ce022cf91d81c9b6d33abf9115e14” has strings contacting 

www.microsoft.com in which the graph has successfully displayed. Analysing this sample in an online 

sandbox environment confirms the presence of this networking information.  

  

  

Figure 22: Verifying networking communication performed by the sample  

  

Sample “6b9ce022cf91d81c9b6d33abf9115e14” contacts Microsoft.com after analysis in the HybridAnalysis 

sandbox environment  

However, one flaw of this framework in this example is this false-positive detection of what seems to be 

a domain name; this is due to the presence of “.net” where there is a simple reference to the 

“Microsoft.NET” programming library, and not domain name such as that in Figure 23 on the following 

page.  

  

http://www.microsoft.com/
http://www.microsoft.com/
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Figure 23: A false-positive identification of similarity between two samples  

  

Samples “9aae6412b2dfc9ed503e6c7123e95579” and “6b9ce022cf91d81c9b6d33abf9115e14” have 

references to the Microsft.NET programming library, resulting in false-similarity identification in this context.  

Moreover, another flaw is that often malicious samples such as the Wannacry ransomware are self-

extracting; what appears to be one file is, in fact, multiple more, where different functionalities are 

contained within, akin to that of Figure 24. The framework will not analyse these files as that will require 

execution – past the remit of static analysis; potentially resulting in fundamental identifiable attributes 

and behaviours being missed by the classification model.  

  

  

Figure 24: Example of how one presented file can be self-containing much more malicious content.  

It could be argued that a larger dataset of malicious samples is needed to reduce this false-positive 

ration. This theory was tested with 96 known to be malicious samples, a sample increase of 433.33%, 

where their presented strings were extracted and processed by the same framework. What is interesting 

is that only one sample, “b9bef10e5b2b11a40f9b330256fcb38e”, had any domain name strings 

extracted and visualised, as illustrated in Figure 25 below.  
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Figure 25: Visualisation of a sample contacting four domains  

  

However, only fourteen samples were visualised as having a similar domain name within their strings 

as currently presented without execution. Alas, these all referred to the Microsoft.NET programming 

library, another false-positive.  

  

  

Figure 26: Large scale abstraction of eleven samples contacting a domain  

  

  

  

Figure 27: Scaled-up abstraction of three samples out of the generated output  

  

This leaves a total of eighty-one other samples having no presented strings correlating to any domain 

name suffixes. Sample “ae12bb54af31227017feffd9598a6f5e” reinforces the grave error of these samples 

not presenting as having any domain name strings within.   

When analysed, the sample in question does, in fact, contact an external domain TLD and countless IP addresses 

in Figures 29 and 30 on the following page.  
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Figure 28: A suspicious domain contacted by the sample  

  

  

Figure 29: Suspicious IT devices contacted by the sample  

  

After further analysis, this sample is also apart of the Wannacry APT campaign but was totally ignored. 

With only a 14.58% chance of visualisation, let alone the chances of 1.04% of correct identification in 

this dataset, a potential use case of this type of framework being the only barrier in identifying malware 

is a disastrous implementation.  

 

7.3.3. Current Automated Solutions for Malware Classification  

At present, whilst the market is expanding rapidly, there is still limited saturation of commercial services 

specialising in malware classification.   

When they are present, they are locked behind expensive paywalls – suitable for only large enterprise 

settings. For enterprises, this cost is negligible when they are on the receiving end of a wide spectrum 

of APT’s. Servies such as Hybrid Analysis execute samples in real-time on dedicated IT devices, where 

behaviour is monitored and then ultimately analysed. The process, for a regular consumer, ranges 

between ten and fifteen minutes, where only one sample can be analysed at a time – up to a maximum 

of five in twenty-four hours.   
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 7.4.  Dataset Distribution  

 7.4.1.  Creating a “clean” Sampleset  

Multiple sources for sample collection was considered and tested, accumulating into two main 

types of “clean” datasets for use throughout the machine learning model. These two different 

datasets included two divergent uses cases of Windows PE functionalities. For example, “clean” 

dataset one, henceforth referenced too as the “fresh-host” dataset is composed of ninety-two system 

executables and software installers. We label this dataset as clean in the parameters that the 

samples are collated from a fresh-install of an Operating System – in this instance, Windows 7 

Professional 32 bit.  

Within this context, the source of the dataset is a “Virtual-Machine” using the commercial-platform 

“VMware Workstation Pro 15” on-top of a Windows 10 Operating System henceforth referred to 

as the Hypervisor.   

A fresh-install of the Operating System onto the host entails installing the Operating System using a digital-

replica of the traditional installation disk, with no additions to the post-installation state. It is essential that 

no additional software is installed on this host, as such action may render the dataset as tainted (i.e. security 

patches).  

  

Figure 30: Details of the environment used for the abstraction of samples for the "clean" dataset  

  



 

Page 37 of 55  

  

The efforts to ensure that the host remains clean is continued throughout collation of data by 

ensuring the host remains disconnected from the Internet. An expected procedure of a fresh install of 

the Windows Operating System is to “call home” and check for security updates. The updates that 

are downloaded are varied based upon numerous factors, such as:   

• Service Pack version   

• License type e.g. Windows Home, Windows Professional   

• 32bit or 64bit   

This is problematic as these updates introduce a large number of variables when collecting the dataset. 

For this research project, we want to keep the baseline as generic - hence applicable as possible.   

The samples collected are from “Windows” as this is the Operating System’s users-abstraction of the   

Kernel-layer. The Operating System at “Levels 2” and “Level 3” is merely an abstraction of the Level 

0 – the Kernel, who is not directly accessed by the user, but through the Operating System itself, as 

visualised in Figure 31.   

  

  

Figure 31: Operating System "Protection Rings" Diagram (Montana State University., 2005)  

In the context of a post-install state, the host contains an approximate 11,005 .DLL object files. The 

actual result April vary, as some object files are not visible or accessible to the user as intentional from 

the Operating System. The alternative dataset curated as a “clean” sample set for this research project 

is a collation of files originating from published software installers and executables. 

An archival file host, FileHippo, a service to make installers available to everyone who needs them, is 

used throughout this research project to create a clean real-world executable dataset...  
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…Executables contained within this dataset are of the fruition of commercial software developers and 

services for the purposes of application installation. These types of files contain similar behaviour to 

that expected to be exhibited from the samples in the malicious dataset, making a valuable training 

resource for the framework proposed, as ultimately malware samples, at an abstraction, are software 

applications written by software developers albeit with malicious intent. Because of these similarities, 

the framework can be created to extract comparable features and classify based upon the deviations 

against the clean dataset.  

 

7.4.2.  Creating a “malicious” Sampleset  

The use of Honeypots, an extremely valuable tool suite available to malware analysts and APT 

trackers alike was considered throughout this research project. For example, The HoneyBow toolkit, a 

high-level interaction Honeypot developed by (Zhuge et al., 2006) "integrates three malware collection 

tools ... [rather than emulating, uses] truly vulnerable services as victims to lure malware infections" 

this method allows real-case and potentially never seen before zero-days to be captured for analysis, 

where these samples will have never of been investigated by an A.V engine before. Whilst this type of 

data is most ideal in theory because these samples have never been classified before via an A.V 

engine; due to the nature of the classifier, any sample parsed through that is not apart of the training 

set is considered a never seen before sample – in effect, there is no known knowledge regarding it. 

Figures 32 and 33 on the page below illustrate the key conceptual differences between high-level and 

low-level interaction Honeypots.   
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Figure 32: Visualisation of a low-level interaction Honeypot  

    

  

Figure 33: Visualisation of a high-level interaction Honeypot  

  

Dionaea, an open-source and low-interaction honeypot application collates malware samples by 

exposing vulnerable services to the internet (P. Bo., 2015).  
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Because of the capabilities offered by this application, this specialised software was used to capture 

current and present malware samples in circulation across the internet today. Spanning across two 

cloud-computing resources hosted on  Amazon Web Services (AWS), these resources, termed as 

“instances” are internet-facing on managed infrastructure. Extraordinary steps have been taken to 

ensure that these instances remain within the AWS terms of service, specifically ensuring 

responsible handling of data at rest and in transit. Data stored within these instances are encrypted at 

the block level with individual keys to each instance, meaning no data can be un-encrypted and 

interacted with outside of this instance. Moreover, although the instances are internet-facing, 

whitelisting-based firewall rules have been implemented to ensure no networking traffic can egress 

from each instance unless specified on an IP address basis.  

 

The only egress these instances can make is to the IP address of the analysis machine used in the 

research project, where any communication to this is also encrypted over the Secure Socket Shell 

(SSH) – a modern industry standard for communication between client/server. No potentially 

malicious code is executable as the collected files are only capable of executing on a Windows 

environment and not Linux, so there is no risk to infrastructure. With these implementations in place, 

these honeypots are compliant to terms of service (AWS Service Terms., 2020). Each instance is 

running the following vulnerable services to collate samples for the dataset:  

• DiskStation FTP  

• Samba 4.3.11  

• MySQL Server  

8. Appraising the Applied Machine Learning Techniques  

Before the datasets were run through various classification models, the datasets needed to be processed 

into more suitable formatting for the classification model, namely to prevent overfitting and to 

increase maximum assurance of the generated testing metrics. Both datasets are loaded into Jupyter 

and then compared.  

 

Figure 34: First 10 files of the clean dataset extracted and described in Jupyter using Matplotlib 
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In Figure 35, a correlation matrix is plotted after comparing the values contained within columns of the two 

datasets compared.  

 

Figure 35: A correlation matrix of the features between the two datasets used in the classifier 

Visualised in the colour scale from least correlation of darker colours, blue and purple, towards the most 

correlation canvased by green and then yellow. There is a noticeable trend in the similarity between the 

values of the columns within the two datasets, a promising trend of classification because of the features 

extracted, such as import functions and sizes.  

  

Figure 36: First five files of the clean dataset   
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Figure 37: First five files of the malicious dataset 

 

These two separate datasets are then combined together, where a binary value of either “1” or “0” is 

appended as to whether or not it is from the malicious sample set or not, where this value is used by 

the classifier in the prediction metrics and not the performance metrics, as detailed below in Figures 38 

and 39 on the following pages.  

  

Figure 38: The "malware" dataset being appended with a "Malware" classification for the training set 
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Figure 39:: The "clean" dataset being appended with a "Malware" classification for the training set 

  

Once these two datasets are combined, we remove one sample from each dataset - both malicious and 

clean. This is to create an initial testing parameter, where there will always be at least one malicious and 

clean sample where it is not classified, but more so the values of both form a baseline.  

  

Figure 40: Two samples from both datasets being removed from classification to be set aside for a testing parameter 

 

In total, this leaves a total of 182 samples to be analysed. From this, two categories for the classifier can 

be created:   

• Training  

• Testing  
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Figure 41: The split-up of the dataset into "Testing" and "Training" respectively  

  

With a heavy bias on splitting the samples more into training then classifying, due to the arguable 

disparity in the correlation of the cohort of samples. This method also helps to prevent overfitting 

after the epochs as data from the sample set are split and tested until there is no unique splitting. When 

this runs out, the behaviours learnt by the classifier are forgotten and the next cohort of epochs are 

considered brand new by the classifier.  

  

  

 9.  Results and Analysis  

9.1. Discussing the Measurements of Results  

The performance metric of classification-based artifical intelligence research projects is measured in four 

ratios:  

• True Positive (TP)  

• True Negative (TN)  

• False Positive (FP)  

• False Negative (FN)  

Whilst the individual influence that these four ratios weigh on the measured success of the project, this 

use case measures them with data being classified, aptly, Malware in mind. With Malware, you want 

to achieve the highest True-Positive and False-Positive values. It is safer to assume that files are 

malicious then discount them as not. Henceforth, the results of TP dictate the accuracy of the 

classifier, whilst the FN dictates the reliability, where a higher FN over TP ratio indicates overfitting 

and/or classification, where the classification technique will need to be revisited.  
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In the case of this project, there are two weighable labels for the performance date:  

• Recall (R)   

• Precision (P)  

  

Figure 42: Recall label calculated from TP / (TP + FP)  

  

Figure 43: Precision label calculated from TP / ( TP + FN)  

 

An algorithms classifier R-value is an indication of how it is performing on samples that are not 

training data, essentially the success of the algorithm in a real-world application. Whereas, the P-value 

is how well that algorithm is performing on training data – a lab scenario. These results are weighted to 

an average, where this is used to measure its success.   

The weighted average is calculated from two averages, micro and macro formulating expressions of those 

in Figure 44 and Figure 56.  

  

Figure 44: Equation for how Micro-Average Precision value is calculated  

  

  

Figure 45: Equation for how Macro-Average Precision value is calculated  
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The average between these two precision labels formulates the total average “precision”. A similar technique is 

used for the “recall” label.  

 

9.2. Actual Results  

9.2.1. Logistic Regression  

This algorithm selects a variety of features for each epoch, where the accuracy of the testing data is 

compared against the accuracy rate obtained throughout the training epochs, the variation of features tested 

are obtained through obtaining the best line of fit through the most features, more so than the importance 

of a feature in classifying malicious behaviour.  

Achieving a weighted P average of 0.95, a 95% chance of correctly classifying samples is inferred 

against the training data, however, with the same weighted average and classification chance on unseen 

data, this algorithm is the highest result out of those implicated so far.  

  

Figure 46: Report of the accuracy results of the P and R labels for a classifier using Logistic Regression  

  

9.2.2. K-Nearest Neighbours  

Implementing this algorithm leads to an arguably increased chance of deviation as the epochs increase, 

or more rather, the values of both micro and macro averages will deviate. K-Nearest Neighbours looks 

at surrounding features if the classifier finds a comparable value between the training data and the 

presented file. Where, for example, the value of K is equal to the number of features or neighbours 

surrounding the selected feature as per the best fit.  

 

 

The ultimate value of the surrounding neighbours, for example, if they are malicious features will 

dictate its classification. To contextualise:  
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Figure 47: Mathematical equation of how the number of neighbours is calculated in K-Nearest Neighbours  

 

Where MF𝑥 and CF𝑥 represent Malicious Feature and Clean Feature. In this case, K=5, however, the 

presence of three MF in counterpart to two CF equates a probable classification of malicious in this example.  

  

Figure 48: Report of the accuracy results of the P and R labels for a classifier using K-Nearest Neighbours  

  

In this algorithm, there was a P and R label of 0.47% or 0.22% both against training and unseen sample 

sets. Due to how this algorithm works, an increase in epochs is expected to return a similar scoring 

because it takes no influence from previous results. The high-scoring as a result of the training set 

could be a result of the use of small dataset size in comparison to other implementations, but also, due 

to how the algorithms assume that a sample must be the same as its neighbours. A small sample set 

increases the likeliness of this K= integer being of a higher value, where an increase of features are to 

be construed as being akin together in terms of maliciousness purely based upon their respective 

distance to where the algorithm deems the best fit.  

  

9.2.3. Random Forest  

With the lowest weighted R and P averages, this algorithm was the lowest-performing in comparison to 

other classification models. Achieving a feeble accuracy scoring of 0.17% in precision and a 0.34%  

recall rate, this algorithm, using supervised learning, is nor real-world and simulated lab environment 

appropriate for classification.  
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Figure 49:  Report of the accuracy results of the P and R labels for a classifier using Random Forest  

 

Random forests use ensemble techniques to pool together the values decided across many decisions trees 

as per the operation of the algorithm. Decision-tree based techniques like these use a formula similar to 

that below in Figure 50:   

  

Figure 50: Calculation of "leaf" importance  

 

The weight of features, referenced as leaves, are dictated by the number of samples in a dataset that matches 

with the leaf (x) divided by the total number of samples (y) in the dataset. The weight of each feature across 

all decision trees is then collated where the classification is then made.  

Scikit, the python machine learning library, creates leaves or known as nodes based upon the amount of 

features present within the dataset, annotated in Figure 51.  

  

Figure 51: Equation formulating how leaves are created and split across decision trees (Ronaghan., 2018)  
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10. Conclusions and Discussion of Future Prospects  

Reassessing the accuracy and reliability scoring of the appraised algorithms, out of the three 

implementations used throughout the methodology In this project, the non-supervised logistic 

regression algorithm had the highest accuracy in classification against both training and unseen sample 

sets.  

With a performance ratio of 0.95% in both training and un-seen sample categorisations,  there is minimal 

overfitting, albeit there being twenty features to determine a classification; this is proven by such similar 

weight average in both the Recall and Precision labels.  

Performance of a higher metric was somewhat expected against other models tested, such as the 

Random Forest algorithm due to the limited dataset size. The scoring is also similar to that of the 

academic work discussed previously.  

Revisiting the objectives and questions desired for discovery in this project, objectives have been met. For 

example, similarities between malicious code were identified and attributed together, where these 

attributes were used to successfully apply machine learning models to a standard of possible 

implementation within the real world.   

However, in reflection, some models such as the Random Forest April have performed better without the 

limitations experienced throughout the project. Namely, the limited dataset size. Whilst this is a 

manageable size for Logistic Regression, Random Forest is another classification model, however, 

whilst supervised, requires a larger scale number of samples within the dataset due to the number of 

decision trees and nodes created by its algorithm.  

The limited dataset size was due to time and financial constraints. Running the honeypots used to collate 

the samples, where duplicate samples were removed, was limited to two devices due to these factors. 

Even with months, ultimately, the dataset was restricted to the collection from these devices.  

 

In the future, a sizeable dataset would be ideal, where perhaps different types of malware are researched, 

where the features extracted are not only those of ransomware, but perhaps a different type such as 

keyloggers or worms. Moreover, another limitation experienced throughout the project is due to static 

analysis of files, where their presented behaviours April be contrasting to the behaviours presented 

when executed.   

Finally, it would be interesting to see how techniques like malware visualisation as used in this project can 

be combined with machine learning models and how the accuracy April be influenced.  
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Figure 52: First 10 files of the "malware" dataset in Jupyter Notebook 

  

Figure 53: First 10 files of the "clean" dataset in Jupyter Notebook 

  


